SOAL
1.
Tentukan apakah himpunan bilangan real
a * b = a + b - 2ab
berupa group, monoid , atau Semigroup.
2. Misalkan
G = { -1, 1}
Tunjukan bahwa G adalah
group abel dibawah perkalian biasa a + b = a * b
3.
Diketahui himpunan R = bilangan real tanpa -1
a + b
= ab + a + b
tentukan sifat
operasi binernya
JAWABAN
1. a
* b = a + b - 2ab
Asosiatif
(a * b) * c = a * (b
* c)
(a * b) * c = (a + b – 2ab) * c
= n * c
= n + c - 2nc
= (a + b – 2ab) + c – 2(a + b – 2ab)c
= a + b + c – 2ab – 2ac – 2bc + 4abc
(a * b) * c = a * (b + c – 2 bc)
= a * n
= a + n – 2an
= a + (b + c - 2bc) – 2a(b + c – 2bc)
= a + b + c – 2bc – 2ab – 2ac + 4abc
Identitas
a * e = e * a = a
a * e = a
a * b = a + b – 2ae
a * e = a + e – 2ae
a =
a + e – 2ae
e = -2ae
e * a e
+ a – 2ae = a + e – 2ae
– 4ae + a = a – 4ae
Invers
a-1
a-1 * a = e
a * b = a + b – 2ae
Misalkan
: a-1 = b
b = - a + 2ae
a * b = a +
b
= -2ae
= a + (-a + 2ae) = -2ae
2ae -2ae
Komutatif (abel)
a * b = b
* a
a + b – 2ab =
b + a – 2ba
Maka persamaan a * b =
a + b
- 2ab disebut semigroup abel
2.
a + b = a * b
dengan G {-1.1}
Tertutup
a + b = a * b
= -1 * 1
= -1
Asosiatif
(a + b) + c
= a + (b + c)
(a + b) + c = (a * b) + c (a + b)
+ c = a + (b *
c)
= n + c =
a + n
= (a * b) * c =
a * (b *
c)
Identitas
a + e = e + a = a
a + e = a
a + b = a *
b
e + a e *
a = a * e
a + e = a *
e
0 = 0
a = a * e e
= 0
Invers
a -1 a -1 + a = e
a + b = a * b
Misalkan : a-1 = b
b = 1/a
a + b = a *
b = 0
= a * (1/a)
= 0
1 = 0
Komutatif (abel)
a + b = b + a
a * b = b * a
maka fungsi a + b = a * b dengan G { -1, 1} bukan merupakan
Group melainkan semigroup abel
3.
Dengan R =
bilangan Real
Tertutup
a + b = ab + a +
b
a + b = (2*1) + 1 + 2
a = 1
= 5
b = 2
Asosiatif
(a + b) + c = a +
(b + c)
(a + b) + c = (ab + a + b) +
c
= n +
c
= nc + n +
c
= (ab + a + b)c + (ab + a + b) + c
= abc + ac + bc + ab + a + b + c
(a
+ b) + c = a + (bc + b + c)
=
a +
n
=
an + a +
n
=
a(bc + b + c) + a + (bc + b + c)
= abc + ac + bc + ab + a + b + c
Identitas
a + e = e + a = a
a + e = a
a + b = ab + a +
b
e + a ae + a + e = ae + a + e
a + e = ae + a + e
a2e
+ a + e = a2e + a + e
a = ae + a + e
e = ae
Invers
a -1 a -1
+ a = e
a + b = ab + a +
b
Misalkan : a-1 = b
ab + b = -a
Komutatif
(abel)
a
+ b = b + a
ab
+ a + b = ba + b + a
maka
fungsi a + b = ab + a + b dengan P bilangan real merupakan
semigroup abel
Posting Komentar